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A method described in a previous paper is tested in the light of potential theory. The method is based on
dispersion relations for Regge pole parameters. The approximations consist in coupling the P's to the 0. s
by applying unitarity at I,=n and considering only a few poles. When the generalized potential is replaced
by a nonrelativistic potential, the coupling equations and solutions to the integral equations can be com-
pared to exact results. Various representations are tested, and it is found that the "modiled Khuri" repre-
sentation for A (l, s) gives good results for o.& (s) in the one-trajectory approximation for Yukawa potentials
strong enough to cause bound S states. The results for t4(s) are less satisfactory. The effect of coupling in
the second trajectory is considered,
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I. INTRODUCTION
'

N a previous paper' a |n.ethod was suggested for
~ ~ approximately bootstrapping Regge trajectories.
The method is based on dispersion relations for Regge
trajectories and on unitarity applied at l=n. In a self-
consistent calculation the potential is to be described in
terms of scattering in crossed channels. Numerical
calculations in terms of generalized potentials' are being
formulated. The present paper presents results based on
the potential theory relations of I. Comparison with the
exact results of Ahmadzadeh' et al.4 gives a feeling
for the accuracy of uncoupled trajectory approxima-
tions and for the rate of convergence of the method to
the full potential-theory answer in terms of the number
of trajectories coupled.

The results depend greatly on the partial-wave
representation used in the coupling equation. The
representations are fully described in I and are called
here "universal, " "Khuri, " and "modified Khuri, "
respectively.

II. EQUATIONS

The results of I are summarized in this section for
clarity. The integral equations are based on the analytic
properties of "normal" trajectories. By considering the
functions n„(s) and b„(s)=P„(s)s o"", we obtain the
following exact equations

for the eth trajectory. The s, are the e—1 indeterminacy
points Lzeros of p (s)g of the rtth trajectory.

The p„(s) are coupled to the rr (s) by unitarity,

t A (s,l) —A (s,P)*$/2i = s't A (s,l)A (s,l*)*,
which is applied at i= sr(s) to give

1/2i = s't'A (s,n*(s))*.
The potential is given by'

V (r) = g'e —""/r-

The representations used are in turn:
Vniversal:

p-(s)
A (s,l) = P +BI,(s,l),

&r l—tr„(s)

(2)

(3)

(Sa)

where
$= cosh '(1+4m'/2s) .

where Br,(s,l) is the contribution of the background
integral.

Khuri:
p-(s)

A(s, l)=P expL(er„(s) —l)P(s)], (Sb)
l—a„(s)

where

$=cosh-'(1+ sst'/2s) .

Modified Khuri'.

p. ( )
A(s l) = & expE( -(s)—l)i(s))

~&r l cr.(s)—
+ (g'/2s) Qt (1+stt'/2s) —(g'/2s)

P„,(1+stt'/2s)
PL—(l+ )i()j (S )

When (3) is applied to these representations, we
obtain the following coupling equations:*Work supported in part by the U. S. Atomic Energy Com-

mission.' S. C. Frautschi, P. Kaus, and F. Zachariasen, Phys. Rev. 153,
31607 (1964), hereinafter referred to as I.' G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961);
G. F. Chew, ibid. 129, 2363 (1963).

'A. Ahmadzadeh, Lawrence Radiation Laboratory Reports
UCRL-10929 and UCRL-11096 (unpublished).' A. Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 13
(1963).

(
1 p„(s)=s't'Q

2i &&. n„(s)—tr„n(s)
—s't'Br, (s,cr„~(s)),

sn(1. , (6a)

15 'The particle mass is chosen equal to $. The range of the
potential (1/m) is chosen equal to 1 in all numerical examples.
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III. NUMERICAL RESULTS AND CONCLUSIONS

The Coupling Equations

For a simple attractive Yukawa potential, the top
trajectory is always normal. Equations (1) are therefore

(6c)

Equations (6) are an infinite set of relations connect-
ing the n's and P's, leading to an inftnite set of coupled
integral equations. ' The set is made 6nite by discarding
all but the first S poles and residues. This leads to E
complex equations for the Ã residues P in terms of the
1V trajectories 4r. Equations (6) reduce to (7) in the
case of /=1.

One-trajectory approximation: s &0

s"'P (s) = Ima(s) (Background neglected), (7a)

St"P(S)=Imn(S) eXpI —2i Im4r(S)$(S) j, (7b)

st"P (s) = Im4r (s)R(s) exp(iLO (s)—2 Im4r (s)g(s)$), (7c)
where

R(s)expig(s) =1+ig's t~'(Q .&,&(1+m'/2s)
—(n*(s)y1)-'exp( —Ln*(s)+1]j(s))) .

Substitution of (7) into (1) then yields the integral
equations:

Universal:
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FIG. 1.s'/' ImP& versus s'/' Rep&, m = 1 g'=0.05. One-trajectory
approximation (itr=1). Exact (Ref. 3) Imat(s) is used as input.
The three curves are: Exact (Ref. 3) Pt(s) ( ), Khuri (7b)
(—~ ~ —), and modified Khuri (7c) (———). The energy s is
shown as a parameter.

exact, and the only approximation involved in the
integral equations (8) comes from the one-trajectory
approximation in the coupling equations (7). When
this is not good enough, more trajectories must be
coupled. To test the coupling relations, (7) was eval-
uated for the Yukawa potential (4) with g'=0.05 and
g'=1.8, m=1. For the input Imn(s), the exact results
of Ahmadzadeh' el al.4 were used. The resulting Pi(s)
for the top trajectory are shown in Figs. 1 through 3,
compared with the exact Pt (s) of Ahmadzadeh' obtained
by solving the Schrodinger equation. Since (7a) makes
sti'Pt(s) real, it does not appear in these 6gures. It is
seen that even for weak coupling (7b) is not a good
approximation. But the modified Khuri (7c) is much
better for the weak coupling and good at large energies
for the stronger coupling g'=1.8.

Figure 2 also shows the results for Pi(s) when the
second trajectory is coupled into Eqs. (6c). Unitarity is
applied at l=4rt(s) through (3) and. the top Pt(s) is
calculated using as input Im4rt(s) and Imas(s) from the
exact results. The modified Khuri representation now
is converging well at all but the intermediate energies.
At g2=1.8 the top trajectory causes a shallow bound
S-state and the second trajectory has become normal. '

The Integral Equations

The solutions to the integral equations (8) for
coupling constants g' ranging from 0.05 to 3 are shown

However, e2(0) &—~. This causes some trouble as s~0
because of the infinitely many trajectories streaming into the ac-
cumulation point a(0) = —$. In this connection see the Appendix.
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FIG. 2. s'~'Imp~ versus s'~'Repi, m=j. , g'=1.8. One- and

two-trajectory approximations. Exact (Ref. 3) P&(s) (——);
modified Khuri (7c) (———) with exact Imai(s) input; modi6ed
Khuri (6c), A" 2) (—~ —) with exact Imaq(s) and Imns(s)
input.

the trajectories will converge to the exact value if the
coupling equations (6) converge. Some indication of
this convergence was given by Fig. 2. It is interesting
to note that the nt(s) from the modified Khuri (7c) is

in Figs. 4 through 9. These are all one-trajectory
approximations and in view of the failure of the coupling
equations (6) for %=i for strong couplings, it was
considered. pointless to go beyond g'= 3 with any of the
one-trajectory equations (8). Coupling the trajectories
is very laborious and will be reserved for the fully
relativistic problem. However, since Eq. (1) is exact,
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FIG 5 Re(El versus s; tN = 1, g' =0.05. Exact (Ref. 3) Rea~ (s)

( ). The other curve (———) is obtained by applying
the dispersion relation (1) for a~ (s) to the results in Fig. 4. Modified
Khuri (8c) only.

considerably better than the test of the coupling
equation (6c) at g'= 1.8, Fig. 2, would let one expect.

When nt(s) obtained from (8c) is used as input for the
X=1 coupling equation (7c) in order to get the residue
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Fn. 3. Same as Fig. 1, with g~=3.0. FIG. 6. Same as Fig. 4 with g'=1.8.
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somewhere near threshold, because there are in6nitely
many trajectories streaming into the accumulation point
at tr(0) = —-', . We wish to show that these must be dealt
with collectively if at all, because only collectively do
these accumulation point trajectories reproduce a
reasonable partial-wave threshold behavior.

The accumulation point trajectories were analyzed
by Newton and Desai~ using the following form for
S(l,k):

sl+,eiw(l+1)g(1)
S(l,s)=, C(—-,')=1. (A2)

st+le—iw(i+i)c(i)
I

Io-I IO

Fio. 13. Real and imaginary parts of the S matrix, S(l,s); l =0,
g'=1.8. Exact (Rei. 3) ( ). The modiited Khuri S(0,s) is
computed from (5c) using the results for Immy(s) from (8c) and
the corresponding P~(s) from (7c).

Khuri representation (Sc) is a much better basis for
the coupling of residues to trajectories than the other
representations tested. It is also indicated that coupling
in higher trajectories is not necessary until these
trajectories become normal, i.e., g'= 1.8 in our example.
For g'=3.0, clearly the second trajectory should be
coupled in, but it is now normal l i.e., ns(s) is analytic
with only a right-hand cut) and should present no
difficulty.
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APPENDIX' ACCUMULATION POINT TRAJECTORIES
AND THRESHOLD BEHAVIOR

When mrs(0) &—xs, the phase of ps(s) near threshold
is given by:

s"'p (s) —& Imn (s)e'~*i~'t'&+"'i
s-Q (A1)

The coupling equations (6) cannot account for the phase
of ps(s) when as(0)& —s, whether nt(s) is coupled in
or not.

In this connection it is important to note that when
mrs(0)& —ts, it ceases to be the "second" trajectory

The position of the poles of the 5 matrix are then
given near /= —

~ by

CLr4 S
27ris 2' 2

+
lns (lns)'

l ~ I&& I»s I/2~. (A3)

When the resid, ue of the pole is examined, one finds

27ris.(s)=
(lns)'

(A4)

Combining the two trajectories with the same
absolute e in (5b), for example, we find the following
contribution:

(4s)'
A „(s,l) - Ls'+&/(1ns)s jm'' '+ (2l+1)

(A5)

) lns)

A(s, l) .- g A„(s,l) ~s'+&.
s—+0+ n~1

(A6)

It is thus plausible to say that when trs(0) &——,', it
is the collective bunch of accumulation point trajec-
tories which play the role of the "second" trajectory.

The coupling equations (6) fail near threshold. for
trajectories for which n(0) &—s, even though Imn(s)
vanishes at threshold. The reason is the threshold,
behavior of the S matrix for Rel& —~~.'8 Except in the
immediate vicinity of a Regge pole, the threshold
behavior is given by

S(l,s) -+ 1, Rel) ——',

S(l,s) -+ e'~'&'+&& Rel &—-', .
(A'/)

~ B.R. Desai and R. G. Newton, Phys. Rev. 130, 2109 (1963).' A. O. Earut and D Zwanziger, P. hys. Rev. 127, 974 (1962).

which is a vanishing contribution compared to the
normal s'+' threshold contribution of normal trajec-
tories. But as s —+ 0 the number of trajectories in this
regime goes up as llnsl. One therefore finds that the
total threshold contribution of the accumulation point
trajectories is given by
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and (3)

which leads to
(1/2i) =$'t'A (s,n*($))*,

$ 't'p($) =Ima($), $ ~,0+, cr(0)) ——', ,

should be replaced by

p($)
2 (s,l) = + (1/2s)Le'r'&'+ll —1j,

t—tr($)
$ —+ 0 n(0) &——,'. (A9)

It follows that the one-trajectory coupling equation,
which is obtained from

p($)
A (s,l) = as $~ 0+, n(0))—s (Ag)

cs—($)

This implies that, except in the neighborhood of a
pole, S(l,$) is given by (A7). When the unitarity
condition (3) is applied to (A9) we obtain

$ t2P($) Imcr($)esrtlatsl+lt21 cr(0) & rs(A10)

This is the correct residue near threshold for cr(0)
&—~. The "width" of the threshold region depends on
the strength of the interaction. There is therefore no
obvious rule as how and at what s one should change
from (A9) to (5) in the coupling equations. If the
expansions (5b) or (5c) converge in the left-hand I
plane, (A10) should obtain if all the trajectories are
coupled in, but as the discussion of the accumulation
point indicates, it is not likely that any finite set will

lead to the correct threshold behavior when a (0)& —rs.
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New Resonances an(I the Vector-Meson System*
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(Received 24 September 1964)

Under the assumption of exact SU& symmetry we investigate the force between two degenerate vector-
meson octets due to the exchange of a vector, pseudoscalar, and scalar octet. It is found that many of the
recently discovered particles may 6t into this scheme as bound states. However, the model does not re-
produce the well-known pseudoscalar and vector-meson octets which are its input, but suggests a second
octet of each kind at higher mass. It also gives a 0+ and 2+ singlet and octet as well as a 1+ and a 2 octet.

I. INTRODUCTION

ECENTLY, several new resonances have been re-
ported in the srp (A),' srco (B),s srE*,s EE*,4 and

~

~ ~ ~

rtsrsr (X')' system. This indicates that resonances may
cluster to form new particles. In this paper we investi-
gate the force between two octets of vector mesons.
Under the assumption of exact SU3 symmetry we calcu-
late the input for an E/D calculation of the vector-
meson —vector-meson scattering amplitude. From the

*This work supported by the U. S.Atomic Energy Commission.
t' Present address: Laboratory for Nuclear Science, Massachu-

setts Institute of Technology, Cambridge, Massachusetts.' G. Goldhaber, J.Brown, S. Goldhaber, J.Kadyk, B.Shen, and
G. Trilling, Phys. Rev. Letters 12, 336 (1964); S. U. Chung,
0. Dahl, L. Hardy, R. Hess, G. KalbQeish, et al. , ibid. 12, 621
(1964); M. AderhoIz et at. , Phys. Letters 10, 226 (1964).' M. Abolins, R. Lander, W. Melhop, ¹ Xuong, and P. Yeager,
Phys. Rev. Letters 11,381 (1963);D. Duane Carmony et al. , ibid.
12, 254 (1964).' T. P. Wangler, A. R. Erwin, W. D. Walker Phys. Letters 9, 71
(1964),R. Armenteros, D. N. Edwards, T. Jacobsen, L. Montanet,
A. Shapira, ibid 9, 207 (1964)..

4Proceedings of the 1964 Conference on High Energy at
Dubna (to be published).

5 G. R. Kalbgeisch, L. Alvarez, A. Barbaro-Galtieri, 0. Dahl,
P. Eberhard et al. , Phys. Rev. Letters 12, 527 (1964);M. Goldberg,
M. Gundzik, S.Lichtman, I.Leitner, M. Primer et al. , ibid, 12, 546
(1964); M. Goldberg, M. Gundzik, I. Leitner, M. Primer, P.
Connolly et al. , ibid. 13, 249 (1964).

sign and the magnitude of the Born-amplitude in the
various channels, we conclude what particles may
emerge from the vector-meson system and where their
masses may range. %'e do not try, however, to deter-
mine the masses and coupling constants by solving the
equations as, for instance, in the models for the x-co

resonance, ' since it involves some parameters. A deter-
mination of these parameters by a self-consistency con-
dition as in the bootstrap calculations' seems impossible
in our case since the attraction in the vector-meson
channel is, as we shall see, weaker than the one for
other particles like 1+ and 2+ which have not been
observed at masses below or about the vector-meson
mass. Vector meson scattering as a qualitative model for
SU& symmetry has previously been studied by Cutkosky
et al. ' These authors do not, however, study the
dynamical details.

' R. F. Peierls, Phys. Rev. Letters 12, 50 (1964); T. K. Kuo,
ibid 12, 465 (1.964); C. Goebel, Phys. Letters 9, 67 (1964);
E. Abers, Phys. Rev. Letters 12, 55 (1964).

F. Zachariasen and C. Zemach, Phys. Rev. 12S, 849 (1962);
R. H. Capps, ibid 134, B460 (196.4), see also references to previous
papers. Chan Hong-Mo, P. C. De Celles, J. E. Paton, Nuovo
Cimento 33, 70 (1964), A. Pignotti Phys. Rev. 134, 3630 (1964),
M. L. Mehta, ibid. 134, B1377 (1964).

R. E. Cutkosky, Phys. Rev. 131, 1888 {1963);R. K. Cutkosky
and P. Tarjanne, ibid. 132, 1354 (1963).


